Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Kidney Int Rep ; 6(2): 429-436, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615068

RESUMO

INTRODUCTION: Glomerular filtration rate (GFR) is routinely estimated with cystatin C. In June 2010, the International Federation of Clinical Chemistry (IFCC) released a certified cystatin C reference material (ERM-DA471/IFCC), and new cystatin C glomerular filtration rate estimation (eGFR) equations were developed with the IFCC standard. Early in 2018, Siemens discontinued their nonstandardized cystatin C reagent kits and replaced them with IFCC-calibrated kits in the US market. The aim of the current study was to assess the effect of IFCC calibration on cystatin C values and corresponding GFR estimations. METHODS: Cystatin C concentration was measured in 81 pediatric patients using a plasma sample from their nuclear GFR measurement with 99mTc-diethylenetriaminepentaaccetic acid. Calibration curves were generated using Siemens nonstandardized and IFCC-standardized kits to measure paired cystatin C concentrations in each sample. GFR-estimating equations using pre-IFCC and IFCC cystatin C values were compared using Bland-Altman analyses. RESULTS: The IFCC-standardized assay resulted in a mean increase in the measured cystatin C value of 24%. Estimating equations consistently overestimated GFR prior to IFCC standardization. Following incorporation of the IFCC standard, the Full Age Spectrum equation demonstrated the best overall performance, whereas the Chronic Kidney Disease in Children (CKiD) equation was more accurate in children with decreased GFR. CONCLUSION: Incorporation of the IFCC standard significantly increased cystatin C values and affected the performance of GFR estimating equations. Clinical laboratories and providers may need to update the equation used for cystatin C-based estimation of GFR following adoption of the IFCC reference standard.

3.
Neurotoxicology ; 65: 125-134, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29409959

RESUMO

Polychlorinated biphenyls (PCBs) are persistent organic pollutants known to cause adverse health effects and linked to neurological deficits in both human and animal studies. Children born to exposed mothers are at highest risk of learning and memory and motor deficits. We developed a mouse model that mimics human variation in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) to determine if genetic variation increases susceptibility to developmental PCB exposure. In our previous studies, we found that high-affinity AhrbCyp1a2(-/-) and poor-affinity AhrdCyp1a2(-/-) knockout mice were most susceptible to learning and memory deficits following developmental PCB exposure compared with AhrbCyp1a2(+/+) wild type mice (C57BL/6J strain). Our follow-up studies focused on motor deficits, because human studies have identified PCBs as a potential risk factor for Parkinson's disease. Dams were treated with an environmentally relevant PCB mixture at gestational day 10 and postnatal day 5. We used a motor battery that included tests of nigrostriatal function as well as cerebellar function, because PCBs deplete thyroid hormone, which is essential to normal cerebellar development. There was a significant effect of PCB treatment in the rotarod test with impaired performance in all three genotypes, but decreased motor learning as well in the two Cyp1a2(-/-) knockout lines. Interestingly, we found a main effect of genotype with corn oil-treated control Cyp1a2(-/-) mice performing significantly worse than Cyp1a2(+/+) wild type mice. In contrast, we found that PCB-treated high-affinity Ahrb mice were most susceptible to disruption of nigrostriatal function with the greatest deficits in AhrbCyp1a2(-/-) mice. We conclude that differences in AHR affinity combined with the absence of CYP1A2 protein affect susceptibility to motor deficits following developmental PCB exposure.


Assuntos
Citocromo P-450 CYP1A2/fisiologia , Bifenilos Policlorados/toxicidade , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptores de Hidrocarboneto Arílico/fisiologia , Teste de Desempenho do Rota-Rod , Animais , Comportamento Animal/fisiologia , Citocromo P-450 CYP1A2/genética , Feminino , Genótipo , Aprendizagem/fisiologia , Exposição Materna , Camundongos , Camundongos Knockout , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Receptores de Hidrocarboneto Arílico/genética
4.
J Neurodev Disord ; 9: 6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28616095

RESUMO

BACKGROUND: Fragile X Syndrome (FXS) occurs as a result of a silenced fragile X mental retardation 1 gene (FMR1) and subsequent loss of fragile X mental retardation protein (FMRP) expression. Loss of FMRP alters excitatory/inhibitory signaling balance, leading to increased neuronal hyperexcitability and altered behavior. Acamprosate (the calcium salt of N-acetylhomotaurinate), a drug FDA-approved for relapse prevention in the treatment of alcohol dependence in adults, is a novel agent with multiple mechanisms that may be beneficial for people with FXS. There are questions regarding the neuroactive effects of acamprosate and the significance of the molecule's calcium moiety. Therefore, the electrophysiological, cellular, molecular, and behavioral effects of acamprosate were assessed in the Fmr1-/y (knock out; KO) mouse model of FXS controlling for the calcium salt in several experiments. METHODS: Fmr1 KO mice and their wild-type (WT) littermates were utilized to assess acamprosate treatment on cortical UP state parameters, dendritic spine density, and seizure susceptibility. Brain extracellular-signal regulated kinase 1/2 (ERK1/2) activation was used to investigate this signaling molecule as a potential biomarker for treatment response. Additional adult mice were used to assess chronic acamprosate treatment and any potential effects of the calcium moiety using CaCl2 treatment on behavior and nuclear ERK1/2 activation. RESULTS: Acamprosate attenuated prolonged cortical UP state duration, decreased elevated ERK1/2 activation in brain tissue, and reduced nuclear ERK1/2 activation in the dentate gyrus in KO mice. Acamprosate treatment modified behavior in anxiety and locomotor tests in Fmr1 KO mice in which control-treated KO mice were shown to deviate from control-treated WT mice. Mice treated with CaCl2 were not different from saline-treated mice in the adult behavior battery or nuclear ERK1/2 activation. CONCLUSIONS: These data indicate that acamprosate, and not calcium, improves function reminiscent of reduced anxiety-like behavior and hyperactivity in Fmr1 KO mice and that acamprosate attenuates select electrophysiological and molecular dysregulation that may play a role in the pathophysiology of FXS. Differences between control-treated KO and WT mice were not evident in a recognition memory test or in examination of acoustic startle response/prepulse inhibition which impeded conclusions from being made about the treatment effects of acamprosate in these instances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...